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ABSTRACT : In recent year, considerable amount of work has been done on vibration control of Smart structures
using piezoelectrics. Active vibration control of a fixed beam using surface bonded piezoelectric sensors and
actuators is examined in this work. The finite element model developed is based on Reddy's third order laminate
theory. The simulation results show that an increase in the number of sensor/actuator pairs improves the
vibration control of the beam. However, the location of the sensors/actuators is even more important in controlling
active vibrations. The sensors/actuators pairs when placed near the regions of highest strains give the best
vibration suppression and show little effect in the lowest strain regions.

Keywords : Smart Structure, Piezoelectric sensors and actuators, Fixed ends beam, Shape control, Vibration control.

I. INTRODUCTION

The ability to respond automatically to changes in their
environment, smart structures offer a simplified approach to
the control of various material and system characteristics
such as noise, shape and vibration, etc. Monitoring and
control of vibrations is vital in achieving the desired
objectives of many engineering systems. A few applications
are vibration suppression of aircraft structures, noise control
of helicopter rotors, health monitoring of bridges, shape
control of large space trusses, aero-elastic control of aircraft
lifting components and seismic control of buildings.
Advances in smart materials technology have produced
much smaller actuators and sensors with high integrity in
structures and an increase in the application of smart
materials for passive and active structural damping.

Several investigators have developed analytical and
numerical, linear and non-linear models for the response of
integrated piezoelectric structures. These models provide
platform for exploring the shape and active vibration control
in smart structures. The experimental work of Bailey and
Hubbard, 1985 [1] is usually cited as the first application of
piezoelectric materials as actuators. They successfully used
piezoelectric sensors and actuators in the vibration control
of isotropic cantilever beams. Crawley and de Luis, 1987 [2]
formulated static and dynamic analytical models for extension
and bending in beams with attached and embedded
piezoelectric actuators. Heyliger and Reddy, 1988 [3]
developed a finite element model for bending and vibration
problems using third order shear deformation theory. They
successfully used piezoelectric sensors and actuators in the
vibration control of isotropic cantilever beams based on the
classical laminated plate theory. Ha, Keilers and Chang,1992
[4] developed a three-dimensional brick element to model
the dynamic and static response of laminated composites
containing distributed piezoelectrics, and then studied the
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active response control for the integrated structures by
coupling simple control algorithms in a closed loop.
Chandrashekhara and Varadarajan, 1997 [5] gave a finite
element model based on higher order shear deformation
theory for laminated composite beams with integrated
piezoelectric actuators. Valoor et al, 2000 [6] used neural
network-based control system for vibration control of
laminated plates with piezoelectrics. Lee and Reddy, 2004
[7] used the third-order shear deformation theory to control
static and dynamic deflections of laminated composite plates.
Prasad et al, 2005 [8] developed a criterion for the evaluation
and selection of piezoelectric materials and actuator
configurations.

The accuracy and efficiency of active vibration control or
suppression models depend on the perfection of
understanding the mechanical interaction between the
piezoelectrics and the underlying structure.  The Euler-
Bernoulli classical theory used to model the beam/plate
deformation neglects the transverse shear deformation
effects. The shear deformation theory has a disadvantage
as it needs a shear correction factor, which is very difficult
to determine especially for arbitrarily laminated composite
structures with piezoelectric layers.  To overcome the above-
mentioned drawbacks, Reddy,1984 [9] developed a third order
laminate theory, which takes into account the quadratic
variation of transverse shear strains, eliminates the
transverse shear stresses on the top and bottom of a
laminated composite structure Thus, no shear correction
factor is needed in the third order theory.

II. PIEZOELECTRIC EQUATIONS

Assuming that a beam consists of a number of layers
(including the piezoelectric layers) and each layer possesses
a plane of material symmetrically parallel to the x-y plane
and a linear piezoelectric coupling between the elastic field
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and the electric field the constitutive equations for the   layer
can be written as,
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The thermal effects are not considered in the analysis. The
piezoelectric constant matrix [e] can be expressed as

[e] = [d][Q}                            ... (3)

where,
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III. NOMENCLATURE

a, b Constants

[C] Global damping matrix

[C*] Control algorithm damping matrix

[Ce] Elemental damping matrix

[d] Piezoelectric strain constant matrix

D Electric Displacement field

[e] Piezoelectric constant matrix

e Piezo electric constant

E Electric field; Young's Modulus of elasticity

{Fv} Global electrical force vector

{F} Global external mechanical force

Gc Gain of the current amplifier vector

[G] Control gain matrix

Gi Gain to provide feedback control

[K] Global Stiffness matrix

[Kc] Elemental Stiffness matrix

[M] Global mass matrix

[Me] Elemental mass matrix

Ni Shape function the ith element

Q General Stiffness of the material

Si Strain energy of the jth element

t Total thickness of the beam

u, v, w Displacements of a point along x, y and z directions
respectively

V Applied voltage to Piezo actuator

VS Open circuit sensor voltage

u0, w0 Displacement of a point on the mid-plane along
the x and z direction respectively

{ }u Nodal displacement vector

{ }u�� Nodal acceleration vector

{x} Generalized displacements

x, y, z Cartesian coordinates

xφ Bending rotation of x-axis

iε Strain of ith element in strain tensor

ε Absolute permittivity of the dielectric

{ }σ stress vector

{ }ε strain vector

φ Rotation of the transverse normal about y-axis
ϕ Cubic Hermit interpolation polynomial

1 3,∆ ∆ Nodal values of ω0

2 4,∆ ∆ Nodal values of 0

x

∂ω
∂

ψ Linear Lagrangian interpolation polynomial

ξ Model damping ratio

e
jψ Quadratic Lagrange’s interpolation functions

ith natural frequencies

[ ]Φ Modal matrix

ϕ Cubic Hermit interpolation polynomial
ψ Linear Lagrangian interpolation polynomial

[ ]Ω Diagonal matrix that stores square of the natural

frequencies

IV. DISPLACEMENT FIELD OF THE THIRD
ORDER THEORY

The displacement field based on the third order beam
theory of Reddy [9] is given by
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w(x, z, t) = w0(x, t)                    ... (6)

where 2

4

3t
α = and t is the total thickness of the beam.

The displacement functions are approximated over each
finite element by
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Using finite element formulation equations (5) and (6)
can be expressed as,
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where,
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The strain-displacement relations are given by
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V. EQUATIONS OF MOTION

The dynamic equations of the piezoelectric structure are
derived using Hamilton's principle. These equations also
provide coupling between electrical and mechanical terms.
The electric force due to the applied charge of the actuator
is not considered in the analysis. The equation of motion
including the damping effects (Rayleigh damping is assumed)
can be written as,
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Assembling all the elemental equations gives the global
dynamic equation,

[ ]{ } [ ]{ } [ ]{ } { } { }VM u C u K u F F+ + = +�� �            ... (17)

where,

{F} = [Kuv]{V}                        ... (18)

VI. SENSOR EQUATIONS
Since no external electric field is applied to the sensor

layer and as charge is collected only in the thickness
direction, only the electric displacement D3 is of interest
and can be written as

3 31 1D e= ε                             ... (19)

Assuming that the sensor patch covers several elements,
the total charge the total charge developed on the sensor
surface is

( )
11 ( ) 1 ( ) 31

1

1
( ) [ ] [ ] { }

2

s

k k

j

N

z z z z j
j S

q t B B e dS u
+= =

=

 
 = +
 
 

∑ ∫ .. (20)

where [B1] is the first row of [B]

The distributed sensor generates a voltage when the
structure is oscillating; and this signal is fed back into the
distributed actuator using a control algorithm, as shown in
Fig. 1. The actuating voltage under a constant gain control
algorithm can be expressed as,

e
i s i c

dq
V G V G G

dt
= =                  ... (21)

Fig. 1. Block Diagram of Feedback Control System.

The system actuating voltages can be written as

{ } [ ][ ]{ }vV G K u= �                     ... (22)

where [G] is the control gain matrix and G = GiGc.

In the feedback control, the electrical force vector {Fv}
can be regarded as a feedback force.  Substituting equation
(22) into equation (18) gives
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[ ] [ ][ ][ ]{ }v uv vF K G K u= �              ... (23)
We define

[C*] = –[Kuv][G][Kv]                  ... (24)
Thus, the system equation of motion, equation (28)

becomes
*[ ]{ } ([ ] [ ]){ } [ ]{ } { }M u C C u K u F+ + + =�� �           ... (25)

Equation (25) shows that, the voltage control algorithm
has a damping effect on the vibration suppression of a
distributed system.

VI. SYSTEM RESPONSE USING MODAL
ANALYSIS

To obtain the dynamic response of the system under a
given external loading condition, a modal analysis technique
is used. The nodal displacement is given by

{ }[ ]{ }u xΦ                            ... (26)
Equation (25), is modified as
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                                                          ... (27)
Since, for a particular natural frequency and hence mode

shape
2[ ] [ ][ ] 2  and [ ]T CΦ Φ = ξω Ω = ω

Equation (25) becomes,
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The initial conditions on {x} can be obtained as follows:
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0{ ) [ ] [ ]{ }Tx M u= Φ ��                       ... (30)

VII. ACTIVE VIBRATION CONTROL
A beam having both ends fixed with both the upper

and lower surfaces bonded by piezoelectric ceramics is
shown in Fig. 2. The beam is made of T300/976 Graphite/
Epoxy composites and the Piezoceramic is PZT G1195N. The
adhesive layers are considered to be of Isotac. The material
properties are given in Table1.  The total thickness of the
beam is 10 mm and the thickness of each Piezoceramic and
adhesive layers are 0.2 mm and 0.1 mm respectively. The
lower Piezoceramics serve as sensors and the upper ones
as actuators. The relative sensors and actuators form sensor/
actuator (S/A) pairs through closed control loops.

Fig. 2. Fixed ends beam with ten pairs of surface bonded

piezoelectric sensors and actuators.

Table 1. Material properties PZT G1195N Piezoceramic
and T300/976 Graphite/Epoxy composites and Adhesive

layer.

P Z T T30/976 Isotac

Young's moduli (GPa) 1.1

E11 63.0 150.0

E22 = E33 63.0 9.0

Shear moduli (GPa)

G12 = G13 24.2 7.10

G23 24.2 2.50

Density, ρ (kg/m3) 7600 1600 890

Piezoelectric constants
(m/V)

d11 = d22 254 × 10–12

Electrical permittivity
(F/m)

ε11 = ε22 15.3 × 10–9

ε33 15.0 × 10–9

First mode damping

coefficient, ξ --- 0.009

The beam as shown in Fig. 2, is considered to simulate
the active vibration control through a simple S/A active
control algorithm.  The beam is assumed to vibrate freely
due to an initial disturbance (first mode) at the middle.  The
Piezoceramics on the lower surface are used as sensors and
those on the upper surface as actuators.  For the analysis,
the whole beam is evenly divided into 40 elements with
each S/A pair covering four elements. The effect of negative
velocity feedback control gains on the transient response
of the cantilever beam subjected to the first mode vibrations
is shown in Figures 3 to 6.  Ten S/A pairs covering the full
span of the beam are used in active vibration suppression.
It can be seen from the figures that, vibrations decay more
quickly when higher control gains are applied.  However,
the gains should be limited for the sake of the breakdown
voltage of the piezoelectric materials.

Fig. 3. The effect of negative velocity gain on fixed ends beam
subjected to first mode vibrations.  (Ten pairs of S/As evenly

distributed).  Gain = 0V/A.
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Fig. 4. The effect of negative velocity gain on fixed ends beam
subjected to first mode vibrations.  (Ten pairs of S/As evenly

distributed).  Gain = –0.5 × 102 V/A.

Fig. 5. The centerline deflection of the beam with two pairs of

actuators located at the middle span.

Similar to the shape control simulation, four different
sets of S/A pairs are considered to evaluate the effect of
the number of S/A on the active vibration suppression. The
decay curves of the middle point displacement with different
pairs of S/A are shown in Figure 6. The control gain of   for
all the four sets of S/A is used.  Form the figure it is clear
that the vibrations decay out more quickly with an increase
in the number of S/A pairs but the location of S/A pairs is
more important. The position of S/A pairs is very important
in vibration control. Similar to the case of shape control,
the S/A pairs are not very effective in vibration suppression
when located at the fixed ends. From the Fig. 6, it can be
seen that the S/A pairs have the best effect on vibration
suppression when located at the mid span of the beam.

Fig. 6. Decay Curves of the mid point deflection of the fixed
ends beam with different pairs of S/As. Gain =  –2.5 × 102 V/A.

VIII. CONCLUSION

An efficient and accurate finite element model and
computer codes (in Matlab), based on the third order
laminate theory, are developed for the active vibration control

of a beam having both ends fixed with distributed
piezoelectric ceramics. From the simulation results obtained,
it is observed that the number and location of the sensor/
actuator is very important in vibration suppression. When
the sensor/actuator pairs are placed in high strain regions,
they are very effective in controlling the vibrations whereas
when they are placed in low strain regions they have little
effect on vibration suppression. An increase in the number
of sensor/actuator pairs shows better results for controlling
vibrations, but their location is found to be more critical.
Thus, it can be concluded that the number and location of
sensor/actuator pairs must be considered carefully in
designing smart structures with distributed piezoelectric
sensor/actuator pairs.
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